Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Kabanets, Valentine (Ed.)We study pseudo-deterministic query complexity - randomized query algorithms that are required to output the same answer with high probability on all inputs. We prove Ω(√n) lower bounds on the pseudo-deterministic complexity of a large family of search problems based on unsatisfiable random CNF instances, and also for the promise problem (FIND1) of finding a 1 in a vector populated with at least half one’s. This gives an exponential separation between randomized query complexity and pseudo-deterministic complexity, which is tight in the quantum setting. As applications we partially solve a related combinatorial coloring problem, and we separate random tree-like Resolution from its pseudo-deterministic version. In contrast to our lower bound, we show, surprisingly, that in the zero-error, average case setting, the three notions (deterministic, randomized, pseudo-deterministic) collapse.more » « less
-
The gold-standard approaches for gleaning statistically valid conclusions from data involve random sampling from the population. Collecting properly randomized data, however, can be challenging, so modern statistical methods, including propensity score reweighting, aim to enable valid inferences when random sampling is not feasible. We put forth an approach for making inferences based on available data from a source population that may differ in composition in unknown ways from an eventual target population. Whereas propensity scoring requires a separate estimation procedure for each different target population, we show how to build a single estimator, based on source data alone, that allows for efficient and accurate estimates on any downstream target data. We demonstrate, theoretically and empirically, that our target-independent approach to inference, which we dub “universal adaptability,” is competitive with target-specific approaches that rely on propensity scoring. Our approach builds on a surprising connection between the problem of inferences in unspecified target populations and the multicalibration problem, studied in the burgeoning field of algorithmic fairness. We show how the multicalibration framework can be employed to yield valid inferences from a single source population across a diverse set of target populations.more » « less
An official website of the United States government
